With cs_get_n()
one can extract the number of participants
used in a clinical significance analysis from a cs_analysis
object. This
may depend on the clinical significance approach and if missing values were
present in the dataset. For all individual analyses, missing values are
handled by list-wise deletion. Consequently, individuals with a missing pre
or post intervention score will be omitted from the analyses.
Arguments
- x
A cs_analysis object
- which
Which n should be returned? Available options are
"all"
, (the default) returns the number of participants in both, the original and used data set"original"
, number of participants in the original dataset"used"
, number of participants in the used data set, so after conversion to wide format and omitting cases with missing values
See also
Extractor functions
cs_get_augmented_data()
,
cs_get_data()
,
cs_get_model()
,
cs_get_reliability()
,
cs_get_summary()
Examples
# n can be extracted for every approach
cs_results_anchor <- claus_2020 |>
cs_anchor(
id,
time,
bdi,
pre = 1,
post = 4,
mid_improvement = 9
)
cs_results_distribution <- claus_2020 |>
cs_distribution(
id,
time,
bdi,
pre = 1,
post = 4,
reliability = 0.80
)
cs_results_statistical <- claus_2020 |>
cs_statistical(
id,
time,
bdi,
pre = 1,
post = 4,
m_functional = 8,
sd_functional = 8,
cutoff_type = "c"
)
cs_results_combined <- claus_2020 |>
cs_combined(
id,
time,
bdi,
pre = 1,
post = 4,
reliability = 0.80,
m_functional = 8,
sd_functional = 8,
cutoff_type = "c"
)
cs_results_percentage <- claus_2020 |>
cs_percentage(
id,
time,
bdi,
pre = 1,
post = 4,
pct_improvement = 0.3
)
cs_get_n(cs_results_anchor)
#> # A tibble: 1 × 3
#> n_original n_used percent_used
#> <int> <int> <dbl>
#> 1 43 40 0.930
cs_get_n(cs_results_distribution)
#> # A tibble: 1 × 3
#> n_original n_used percent_used
#> <int> <int> <dbl>
#> 1 43 40 0.930
cs_get_n(cs_results_statistical)
#> # A tibble: 1 × 3
#> n_original n_used percent_used
#> <int> <int> <dbl>
#> 1 43 40 0.930
cs_get_n(cs_results_combined)
#> # A tibble: 1 × 3
#> n_original n_used percent_used
#> <int> <int> <dbl>
#> 1 43 40 0.930
cs_get_n(cs_results_percentage)
#> # A tibble: 1 × 3
#> n_original n_used percent_used
#> <int> <int> <dbl>
#> 1 43 40 0.930
# Get your desired n
cs_get_n(cs_results_anchor, which = "all")
#> # A tibble: 1 × 3
#> n_original n_used percent_used
#> <int> <int> <dbl>
#> 1 43 40 0.930
cs_get_n(cs_results_anchor, which = "original")
#> # A tibble: 1 × 1
#> n_original
#> <int>
#> 1 43
cs_get_n(cs_results_anchor, which = "used")
#> # A tibble: 1 × 1
#> n_used
#> <int>
#> 1 40