Retrieve the summary table in a tidy tibble format. This is especially useful to plot the results or conduct sensitivity analyses.
Usage
cs_get_summary(x, ...)
# S3 method for default
cs_get_summary(x, which = c("individual", "group"), ...)
# S3 method for cs_anchor_group_within
cs_get_summary(x, ...)
# S3 method for cs_anchor_group_between
cs_get_summary(x, ...)
Arguments
- x
An object of class
cs_analysis
- ...
Additional arguments passed to the respective method
- which
Which level of summary table to return. This is only necessary for method
"HA"
since two summary tables are reported. Available areindividual
, the defaultgroup
, group level results according to Hageman & Arrindell (1999)
References
Hageman, W. J., & Arrindell, W. A. (1999). Establishing clinically significant change: increment of precision and the distinction between individual and group level analysis. Behaviour Research and Therapy, 37(12), 1169–1193. https://doi.org/10.1016/S0005-7967(99)00032-7
See also
Extractor functions
cs_get_augmented_data()
,
cs_get_data()
,
cs_get_model()
,
cs_get_n()
,
cs_get_reliability()
Examples
anchor_results <- claus_2020 |>
cs_anchor(
id,
time,
bdi,
pre = 1,
post = 4,
mid_improvement = 8
)
cs_get_summary(anchor_results)
#> # A tibble: 3 × 3
#> category n percent
#> <fct> <int> <chr>
#> 1 Improved 20 50.00%
#> 2 Unchanged 17 42.50%
#> 3 Deteriorated 3 7.50%
# Get summary table for a group level analysis
anchor_results_grouped <- claus_2020 |>
cs_anchor(
id,
time,
bdi,
pre = 1,
post = 4,
mid_improvement = 8,
target = "group"
)
cs_get_summary(anchor_results_grouped)
#> # A tibble: 1 × 6
#> difference lower upper ci n category
#> <dbl> <dbl> <dbl> <dbl> <int> <chr>
#> 1 -9.40 -13.1 -5.82 0.95 40 Probably clinically significant effect
# Get group-wise summary table for the Hageman & Arrindell method
combined_results <- claus_2020 |>
cs_combined(
id,
time,
bdi,
pre = 1,
post = 4,
m_functional = 8,
sd_functional = 8,
reliability = 0.80,
rci_method = "HA"
)
cs_get_summary(combined_results)
#> # A tibble: 5 × 3
#> category n percent
#> <fct> <int> <chr>
#> 1 Recovered 7 17.50%
#> 2 Improved 18 45.00%
#> 3 Unchanged 15 37.50%
#> 4 Deteriorated 0 0.00%
#> 5 Harmed 0 0.00%
cs_get_summary(combined_results, which = "group")
#> # A tibble: 2 × 2
#> category percent
#> <chr> <dbl>
#> 1 Changed 0.841
#> 2 Functional 0.354