Skip to contents

With cs_get_model() you can extract the fitted HLM model for the distribution-based approach. This is useful to either diagnose the model further (beacuse all assumptions of HLMs apply in this case) or plot the results differently.

Usage

cs_get_model(x)

Arguments

x

A cs_analysis object

Value

A model of class lmerMod

See also

Examples

cs_results <- claus_2020 |>
  cs_distribution(id, time, bdi, rci_method = "HLM")

cs_get_model(cs_results)
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: outcome ~ time + (time | id)
#>    Data: data
#> REML criterion at convergence: 1106.347
#> Random effects:
#>  Groups   Name        Std.Dev. Corr 
#>  id       (Intercept) 6.344         
#>           time        2.766    -0.08
#>  Residual             5.316         
#> Number of obs: 160, groups:  id, 40
#> Fixed Effects:
#> (Intercept)         time  
#>      37.663       -3.398