With cs_get_model()
you can extract the fitted HLM model for
the distribution-based approach. This is useful to either diagnose the
model further (beacuse all assumptions of HLMs apply in this case) or plot
the results differently.
See also
Extractor functions
cs_get_augmented_data()
,
cs_get_data()
,
cs_get_n()
,
cs_get_reliability()
,
cs_get_summary()
Examples
cs_results <- claus_2020 |>
cs_distribution(id, time, bdi, rci_method = "HLM")
cs_get_model(cs_results)
#> Linear mixed model fit by REML ['lmerMod']
#> Formula: outcome ~ time + (time | id)
#> Data: data
#> REML criterion at convergence: 1106.347
#> Random effects:
#> Groups Name Std.Dev. Corr
#> id (Intercept) 6.344
#> time 2.766 -0.08
#> Residual 5.316
#> Number of obs: 160, groups: id, 40
#> Fixed Effects:
#> (Intercept) time
#> 37.663 -3.398